Basolateral K channels in an insect epithelium. Channel density, conductance, and block by barium

نویسندگان

  • JW Hanrahan
  • NK Wills
  • JE Phillips
  • SA Lewis
چکیده

K channels in the basolateral membrane of insect hindgut were studied using current fluctuation analysis and microelectrodes. Locust recta were mounted in Ussing-type chambers containing Cl-free saline and cyclic AMP (cAMP). A transepithelial K current was induced by raising serosal [K] under short-circuit conditions. Adding Ba to the mucosal (luminal) side under these conditions had no effect; however, serosal Ba reversibly inhibited the short-circuit current (Isc), increased transepithelial resistance (Rt), and added a Lorentzian component to power density spectra of the Isc. A nonlinear relationship between corner frequency and serosal [Ba] was observed, which suggests that the rate constant for Ba association with basolateral channels increased as [Ba] was elevated. Microelectrode experiments revealed that the basolateral membrane hyperpolarized when Ba was added: this change in membrane potential could explain the nonlinearity of the 2 pi fc vs. [Ba] relationship if external Ba sensed about three-quarters of the basolateral membrane field. Conventional microelectrodes were used to determine the correspondence between transepithelially measured current noise and basolateral membrane conductance fluctuations, and ion-sensitive microelectrodes were used to measure intracellular K activity (acK). From the relationship between the net electrochemical potential for K across the basolateral membrane and the single channel current calculated from noise analysis, we estimate that the conductance of basolateral K channels is approximately 60 pS, and that there are approximately 180 million channels per square centimeter of tissue area.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two K+ channel types, muscarinic agonist-activated and inwardly rectifying, in a Cl- secretory epithelium: the avian salt gland

Patches of membrane on cells isolated from the nasal salt gland of the domestic duck typically contained two types of K+ channel. One was a large-conductance ("maxi") K+ channel which was activated by intracellular calcium and/or depolarizing membrane voltages, and the other was a smaller-conductance K+ channel which exhibited at least two conductance levels and displayed pronounced inward rect...

متن کامل

Inward-rectifier Potassium in Basolateral Membranes of Frog Skin Epithelium Channels

Inward-rectifier K channel: using macroscopic voltage clamp and single-channel patch clamp techniques we have identified the K + channel responsible for potassium recycling across basolateral membranes (BLM) of principal cells in intact epithelia isolated from frog skin. The spontaneously active K + channel is an inward rectifier (Ke) and is the major component of macroscopic conductance of int...

متن کامل

An evidence for a potassium channel in endoplasmic reticulum based on single channel recording in bilayer lipid membrane

Introduction Numerous studies have demonstrated the presence of potassium selective channels in membranes internal organelles. These channels are essential to a large variety of cellular processes including intracellular 2+ a signaling, protein recycling, charge neutralization and cell protection. In contrast to the sarcoplasmic reticulum + here potassium channels have been clearly ...

متن کامل

Single anion-selective channels in basolateral membrane of a mammalian tight epithelium.

Basolateral membrane chloride permeability of surface cells from rabbit urinary bladder epithelium was studied using the patch-clamp technique. Two types of anion-selective channel were observed. One channel type showed inward rectification and had a conductance of 64 pS at-50 mV when bathed symmetrically by saline solution containing 150 mM chloride; the other resembled high-conductance voltag...

متن کامل

Intracellular calcium regulates basolateral potassium channels in a chloride-secreting epithelium.

The two individual cell membranes of epithelia are functionally coupled, so that changes in apical membrane conductance are paralleled by changes in basolateral K+ conductance. However, the signal that regulates basolateral K+ conductance, thereby coupling the two membranes, is unknown. We tested the hypothesis that the cellular calcium concentration, [Ca2+]c, may regulate basolateral K+ conduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 87  شماره 

صفحات  -

تاریخ انتشار 1986